4 Likes
How to deploy Nest.js microservices using Kubernetes

How to deploy Nest.js microservices using Kubernetes

124 PV4 LikesBackendKubernetes
The aim of the project is to use Nest.js to build a microservice project that communicate via gRPC and a gateway service to expose API, use RabbitMQ to handle message queues, and ELK for log management. Finally, Docker and Kubernetes will be used for building and deploying those services.

To view the full example, please visit learn-backend on GitHub.

Code Structure

. ├── apps │   ├── gateway │   │   ├── src │   │   │   ├── gateway.module.ts │   │   │   ├── gateway.controller.ts │   │   │   └── main.ts │   │   └── tsconfig.app.json │   ├── product │   │   ├── src │   │   │   ├── main.ts │   │   │   ├── product.module.ts │   │   │   └── product.controller.ts │   │   └── tsconfig.app.json ├── docker │   ├── Dockerfile.gateway │   └── Dockerfile.product ├── k8s │   ├── gateway-deployment.yaml │   └── product-deployment.yaml ├── proto │   └── product.proto ├── types │   └── proto │       └── product.ts ├── tsconfig.build.json ├── tsconfig.json ├── nest-cli.json ├── package.json ├── pnpm-lock.yaml

Using Nest.js to create monorepo

First, follow the Workspaces guide to create a Nest.js monorepo project.

nest new gateway cd gateway nest generate app product

Using gRPC for communication

A microservice is essentially an application that uses a different transport layer than HTTP. We can use gRPC, Thrift, or even just TCP as the transport layer. In this case, we will use gRPC. gRPC is a modern open source high performance Remote Procedure Call (RPC) framework that can run in any environment. It can efficiently connect services in and across data centers with pluggable support for load balancing, tracing, health checking and authentication. It is also applicable in last mile of distributed computing to connect devices, mobile applications and browsers to backend services.

image.png
image.png

Protocol Buffers

Since microservice code can be written in various programming languages, we need a language-neutral, platform-neutral, and extensible mechanism for serializing structured data. By default, gRPC uses Protocol Buffers. The follows code defines protobuf to the `product` microservice.

syntax = "proto3"; package product; message Product {   string id = 1;   string name = 2;   string description = 3;   double unitPrice = 4;   int32 inventoryQuantity = 5;   string createdAt = 6;   string updatedAt = 7; } message CreateProductRequest {   string name = 1;   string description = 2;   double unitPrice = 3;   int32 inventoryQuantity = 4; } message CreateProductResponse { Product product = 1; } message GetProductRequest { string id = 1; } message GetProductResponse { Product product = 1; } message UpdateProductRequest {   string id = 1;   string name = 2;   string description = 3;   double unitPrice = 4;   int32 inventoryQuantity = 5; } message UpdateProductResponse { Product product = 1; } message DeleteProductRequest { string id = 1; } message DeleteProductResponse { bool success = 1; } service ProductService {   rpc CreateProduct(CreateProductRequest) returns (CreateProductResponse);   rpc GetProduct(GetProductRequest) returns (GetProductResponse);   rpc UpdateProduct(UpdateProductRequest) returns (UpdateProductResponse);   rpc DeleteProduct(DeleteProductRequest) returns (DeleteProductResponse); }

protoc

Since this is a TypeScript project, it is better to transform the protobuf definitions into TypeScript interfaces. We use `ts-protoc` to compile protobuf files to TypeScript interfaces. First, you need to install `protoc` on your computer. If you are using macOS, simply run:

brew install protobuf

Next, add the follows command to the scripts section of your package.json:

"proto-ts": "protoc --plugin=./node_modules/.bin/protoc-gen-ts_proto --ts_proto_out=./types ./proto/*.proto --ts_proto_opt=nestJs=true,addGrpcMetadata=true,addNestjsRestParameter=true,outputEncodeMethods=false,outputJsonMethods=false,outputClientImpl=false"

This command not only generates TypeScript interfaces, but also generates controller interface for Nest.js.

// Code generated by protoc-gen-ts_proto. DO NOT EDIT. // versions: //   protoc-gen-ts_proto  v2.2.5 //   protoc               v5.28.3 // source: proto/product.proto /* eslint-disable */ import { Metadata } from '@grpc/grpc-js' import { GrpcMethod, GrpcStreamMethod } from '@nestjs/microservices' import { Observable } from 'rxjs' export const protobufPackage = 'product' export interface Product {   id: string   name: string   description: string   unitPrice: number   inventoryQuantity: number   createdAt: string   updatedAt: string } export interface CreateProductRequest {   name: string   description: string   unitPrice: number   inventoryQuantity: number } export interface CreateProductResponse {   product: Product | undefined } export interface GetProductRequest {   id: string } export interface GetProductResponse {   product: Product | undefined } export interface UpdateProductRequest {   id: string   name: string   description: string   unitPrice: number   inventoryQuantity: number } export interface UpdateProductResponse {   product: Product | undefined } export interface DeleteProductRequest {   id: string } export interface DeleteProductResponse {   success: boolean } export const PRODUCT_PACKAGE_NAME = 'product' export interface ProductServiceClient {   createProduct(     request: CreateProductRequest,     metadata: Metadata,     ...rest: any   ): Observable<CreateProductResponse>   getProduct(     request: GetProductRequest,     metadata: Metadata,     ...rest: any   ): Observable<GetProductResponse>   updateProduct(     request: UpdateProductRequest,     metadata: Metadata,     ...rest: any   ): Observable<UpdateProductResponse>   deleteProduct(     request: DeleteProductRequest,     metadata: Metadata,     ...rest: any   ): Observable<DeleteProductResponse> } export interface ProductServiceController {   createProduct(     request: CreateProductRequest,     metadata: Metadata,     ...rest: any   ):     | Promise<CreateProductResponse>     | Observable<CreateProductResponse>     | CreateProductResponse   getProduct(     request: GetProductRequest,     metadata: Metadata,     ...rest: any   ):     | Promise<GetProductResponse>     | Observable<GetProductResponse>     | GetProductResponse   updateProduct(     request: UpdateProductRequest,     metadata: Metadata,     ...rest: any   ):     | Promise<UpdateProductResponse>     | Observable<UpdateProductResponse>     | UpdateProductResponse   deleteProduct(     request: DeleteProductRequest,     metadata: Metadata,     ...rest: any   ):     | Promise<DeleteProductResponse>     | Observable<DeleteProductResponse>     | DeleteProductResponse } export function ProductServiceControllerMethods() {   return function (constructor: Function) {     const grpcMethods: string[] = [       'createProduct',       'getProduct',       'updateProduct',       'deleteProduct'     ]     for (const method of grpcMethods) {       const descriptor: any = Reflect.getOwnPropertyDescriptor(         constructor.prototype,         method       )       GrpcMethod('ProductService', method)(         constructor.prototype[method],         method,         descriptor       )     }     const grpcStreamMethods: string[] = []     for (const method of grpcStreamMethods) {       const descriptor: any = Reflect.getOwnPropertyDescriptor(         constructor.prototype,         method       )       GrpcStreamMethod('ProductService', method)(         constructor.prototype[method],         method,         descriptor       )     }   } } export const PRODUCT_SERVICE_NAME = 'ProductService'

Starting RabbitMQ Docker Container

RabbitMQ is a reliable and mature messaging and streaming broker, which is easy to deploy on cloud environments, on-premises, and on your local machine. We use `docker compose` to start a simply container.

services:   rabbitmq:     image: rabbitmq:3-management     restart: always     container_name: rabbitmq     ports:       - 5672:5672       - 15672:15672     environment:       - RABBITMQ_DEFAULT_USER=root       - RABBITMQ_DEFAULT_PASS=password     volumes:       - /var/lib/docker/volumes/rabbitmq:/var/lib/rabbitmq

Then, visit http://localhost:15672/ to open the management platform.

rabbitmq management platform
rabbitmq management platform

Starting ELK Docker Container

The ELK Stack is a powerful suite of open-source tools designed for searching, analyzing, and visualizing log data in real-time. It consists of three main components: Elasticsearch, a search and analytics engine; Logstash, a data processing pipeline that collects, parses, and stores logs; and Kibana, a visualization tool that allows users to explore and interact with data stored in Elasticsearch. Together, these tools provide a robust solution for managing and analyzing large volumes of log data from various sources, making it easier to monitor and troubleshoot applications and infrastructure. First, create `logstash/pipeline/logstash.conf` and add the configuration as follows:

input {   beats {     port => 5000   } } filter {   # Add your filters here } output {   elasticsearch {     hosts => ["elasticsearch:9200"]     index => "%{[@metadata][beat]}-%{+YYYY.MM.dd}"   }   stdout { codec => rubydebug } }

Then, run the follows `docker-compose.yaml` file via `docker compose up -d`:

services:   elasticsearch:     image: docker.elastic.co/elasticsearch/elasticsearch:8.16.0     container_name: elasticsearch     restart: 'always'     environment:       - discovery.type=single-node       - xpack.security.enabled=false       - bootstrap.memory_lock=true       - "ES_JAVA_OPTS=-Xms512m -Xmx512m"     ulimits:       memlock:         soft: -1         hard: -1     volumes:       - esdata:/usr/share/elasticsearch/data     ports:       - "9200:9200"       - "9300:9300"     networks:       - elk   logstash:     image: docker.elastic.co/logstash/logstash:8.16.0     container_name: logstash     restart: 'always'     volumes:       - ./logstash/pipeline:/usr/share/logstash/pipeline     ports:       - "5044:5044"       - "9600:9600"     networks:       - elk     depends_on:       - elasticsearch   kibana:     image: docker.elastic.co/kibana/kibana:8.16.0     container_name: kibana     restart: 'always'     environment:       - ELASTICSEARCH_URL=http://elasticsearch:9200     ports:       - "5601:5601"     networks:       - elk     depends_on:       - elasticsearch networks:   elk:     driver: bridge volumes:   esdata:     driver: local

Nest.js Microservice

Instantiating a microservice is as straightforward as setting up a normal HTTP service. Simply follow the Nest.js Microservices instructions. In this case, we also integrateELK and RabbitMQ.

apps/product/main.ts

There are two important points to note:

  1. If `product.proto` imports other `.proto` files, such as `common.proto`, you must also include the `common.proto` file. There are two ways to address this:

Option 1: Directly import `common.proto` into the `protoPath`:    

protoPath: [join(process.cwd(), 'proto/product.proto'), join(process.cwd(), 'proto/common.proto')],

Option 2: Load the entire `proto` directory.

loader: { includeDirs: [process.cwd(), 'proto'] }
  1. Configure the service to listen on `0.0.0.0:10087` instead of `localhost:10087`. This is because each Kubernetes Pod operates within its own network namespace, and `localhost` just refers to the Pod’s loopback address. Other Pods cannot communicate with it using `localhost`.
import { ecsFormat } from '@elastic/ecs-winston-format' import { NestFactory } from '@nestjs/core' import { MicroserviceOptions, Transport } from '@nestjs/microservices' import { WinstonModule } from 'nest-winston' import { join } from 'path' import * as winston from 'winston' import { ElasticsearchTransport } from 'winston-elasticsearch' import { ProductModule } from './product.module' // Using winston and ELK instead of the official logger export const logger = WinstonModule.createLogger({   instance: winston.createLogger({     level: 'info',     format: ecsFormat(),     transports: [       new ElasticsearchTransport({         level: 'info',         indexPrefix: 'learn-backend-logging', // Remember this line and we'll use it to config Kibana Data View         indexSuffixPattern: 'YYYY-MM-DD',         clientOpts: {           node: 'http://0.0.0.0:9200',           maxRetries: 5,           requestTimeout: 10000,           sniffOnStart: false,           tls: { rejectUnauthorized: false }         }       })     ]   }) }) async function bootstrap() {   const app = await NestFactory.createMicroservice<MicroserviceOptions>(     ProductModule,     {       transport: Transport.GRPC,       options: {         package: 'product',         protoPath: join(process.cwd(), 'proto/product.proto'),         url: '0.0.0.0:10087'       },       logger     }   )   await app.listen() } bootstrap()

apps/product/product.module.ts

import { ConfigModule } from '@app/config' import { RabbitMQModule } from '@golevelup/nestjs-rabbitmq' import { Logger, Module } from '@nestjs/common' import { ProductController } from './product.controller' import { ProductService } from './product.service' @Module({   imports: [     ConfigModule,     RabbitMQModule.forRoot(RabbitMQModule, {       exchanges: [{ name: 'MQ_SERVICE', type: 'topic' }],       uri: 'amqp://root:password@0.0.0.0:5672',       connectionInitOptions: { wait: false },       deserializer: (message: Buffer) => {         return message       },       serializer: (msg: unknown) => {         const encodedMessage = JSON.stringify(msg)         return Buffer.from(encodedMessage)       }     })   ],   controllers: [ProductController],   providers: [ProductService, Logger] }) export class ProductModule {}

apps/product/product.controller.ts

After running the `pnpm run proto-ts` command, you will generate the `ProductServiceController` interface. You can implement it and create the template code as follows:

import { AmqpConnection, RabbitSubscribe } from '@golevelup/nestjs-rabbitmq' import { Controller, Logger } from '@nestjs/common' import { GrpcMethod } from '@nestjs/microservices' import { Observable } from 'rxjs' import {   CreateProductRequest,   CreateProductResponse,   DeleteProductRequest,   DeleteProductResponse,   GetProductRequest,   GetProductResponse,   ProductServiceController,   UpdateProductRequest,   UpdateProductResponse } from 'types/proto/product' @Controller() export class ProductController implements ProductServiceController {   constructor(private readonly logger: Logger, private readonly amqpConnection: AmqpConnection,) {}   @GrpcMethod('ProductService', 'CreateProduct')   createProduct(     request: CreateProductRequest   ): Promise<CreateProductResponse> | CreateProductResponse {      throw new Error('Method not implemented.')   }   @GrpcMethod('ProductService', 'GetProduct')   getProduct(     request: GetProductRequest   ):     | Promise<GetProductResponse>     | Observable<GetProductResponse>     | GetProductResponse {     // record log to elasticsearch     this.logger.log('call getProduct rpc')     // publish rabbitmq message     this.amqpConnection.publish(       'MQ_SERVICE',       'get_product_by_id',       request     )     return {}   }   updateProduct(     request: UpdateProductRequest   ):     | Promise<UpdateProductResponse>     | Observable<UpdateProductResponse>     | UpdateProductResponse {     throw new Error('Method not implemented.')   }   deleteProduct(     request: DeleteProductRequest   ):     | Promise<DeleteProductResponse>     | Observable<DeleteProductResponse>     | DeleteProductResponse {     throw new Error('Method not implemented.')   }   @RabbitSubscribe({     exchange: 'MQ_SERVICE',     routingKey: 'get_product_by_id'   })   public async subscribe(content: Buffer, msg: unknown) {     const message = JSON.parse(content.toString())     console.log(message, msg)   } }

Nest.js Gateway

The Gateway service is simply a HTTP service, we want to use it call Product microservice service and expose the APIs.

apps/gateway/main.ts

import { NestFactory } from '@nestjs/core' import { GatewayModule } from './gateway.module' async function bootstrap() {   const app = await NestFactory.create(GatewayModule)   await app.listen(10086) } bootstrap()

apps/gateway/gateway.module.ts

To call the Product microservice, you need to register it at first. Kubernetes uses an internal `DNS name` system for service discovery. We will name the Product microservice service `product-service` at the follows chapter. In production, you can reach the Product microservice using `product-service:10087`, while in development, you just use `0.0.0.0:10087`.

import { ConfigModule } from '@app/config' import { Logger, Module } from '@nestjs/common' import { ClientsModule, Transport } from '@nestjs/microservices' import { join } from 'path' import { GatewayController } from './gateway.controller' @Module({   imports: [     ClientsModule.register([       {         name: 'ORDER_SERVICE',         transport: Transport.GRPC,         options: {           url:             process.env.NODE_ENV === 'production'               ? 'product-service:10087' // For Kubernetes production environment               : '0.0.0.0:10087', // For local development environment            package: 'product',           protoPath: join(process.cwd(), 'proto/product.proto'),           loader: {             includeDirs: [process.cwd(), 'proto']           }         }       }     ]),   ],   providers: [GatewayController] }) export class GatewayModule {}

apps/gateway/gateway.controller.ts

import { Metadata } from '@grpc/grpc-js' import {   Controller,   Get,   Inject,   Logger,   OnModuleInit,   Param } from '@nestjs/common' import { ClientGrpc } from '@nestjs/microservices' import { Observable } from 'rxjs' import {   GetProductResponse,   ProductServiceController } from 'types/proto/product' @Controller() export class GatewayController implements OnModuleInit {   private productService: ProductServiceController   constructor(@Inject('PRODUCT_SERVICE') private productClient: ClientGrpc) {}   onModuleInit() {     this.productService =       this.productClient.getService<ProductServiceController>('ProductService')   }   @Get(':id')   getProduct(     @Param('id') id: string   ):     | Promise<GetProductResponse>     | Observable<GetProductResponse>     | GetProductResponse {     const metadata = new Metadata()     return this.productService.getProduct(       {         id       },       metadata     )   } }

Dockerfile

With the code phrase completed, we are now writing Dockerfiles for the Gateway service and the Product service.

docker/Dockerfile.gateway

FROM node:20-alpine AS builder WORKDIR /app COPY package.json pnpm-lock.yaml ./ RUN npm install -g pnpm RUN pnpm install COPY . . RUN pnpm build gateway FROM node:20-alpine AS runner WORKDIR /app COPY --from=builder /app/dist/apps/gateway ./dist COPY --from=builder /app/node_modules ./node_modules COPY package.json . COPY proto ./proto ENV NODE_ENV=production EXPOSE 10086 CMD ["node", "dist/main"]

docker/Dockerfile.product

FROM node:20-alpine AS builder WORKDIR /app COPY package.json pnpm-lock.yaml ./ RUN npm install -g pnpm RUN pnpm install COPY . . RUN pnpm build product FROM node:20-alpine AS runner WORKDIR /app COPY --from=builder /app/dist/apps/product ./dist COPY --from=builder /app/node_modules ./node_modules COPY package.json . COPY proto ./proto ENV NODE_ENV=production EXPOSE 10087 CMD ["node", "dist/main"]

Finally, run the follows commands in the root path:

docker build -t commerce/gateway-service:0.0.1 -f docker/Dockerfile.gateway . docker build -t commerce/product-service:0.0.1 -f docker/Dockerfile.product .

Docker Images
Docker Images

Set up Kubernetes Dashboard

Firstly, install `helm` on your computer. If you are using macOS, simply run:

brew install helm

Then, install Kubernetes Dashboard package:

# Add kubernetes-dashboard repository helm repo add kubernetes-dashboard https://kubernetes.github.io/dashboard/ # Deploy a Helm Release named "kubernetes-dashboard" using the kubernetes-dashboard chart helm upgrade --install kubernetes-dashboard kubernetes-dashboard/kubernetes-dashboard --create-namespace --namespace kubernetes-dashboard

k8s-1.png
k8s-1.png
Once Kubernetes Dashboard is installed, you can verify it using the follows command:

kubectl get svc -n kubernetes-dashboard

k8s-2.png
k8s-2.png

Creating Account and Token

Follow the instruction. First, create a Kubernetes manifest file to create a service account. For example:

apiVersion: v1 kind: ServiceAccount metadata:   name: admin-user   namespace: kube-system --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata:   name: admin-user roleRef:   apiGroup: rbac.authorization.k8s.io   kind: ClusterRole   name: cluster-admin subjects: - kind: ServiceAccount   name: admin-user   namespace: kube-system

Next, apply the above configuration to the Kubernetes cluster.

kubectl create -f k8s-dashboard-account.yaml

Next, generate a token using the follows command:

kubectl -n kube-system create token admin-user

Starting Kubernetes Dashboard Server

kubectl -n kubernetes-dashboard port-forward svc/kubernetes-dashboard-kong-proxy 8443:443

Finally, fill out your token on the field.

k8s-3.png
k8s-3.png

Kubernetes Deployment

k8s/gateway-deployment.yaml

apiVersion: apps/v1 kind: Deployment metadata:   name: gateway-deployment spec:   replicas: 2   selector:     matchLabels:       app: gateway   template:     metadata:       labels:         app: gateway     spec:       containers:         - name: gateway           image: commerce/gateway-service:0.0.1           ports:             - containerPort: 10086 --- apiVersion: v1 kind: Service metadata:   name: gateway-service spec:   selector:     app: gateway   ports:     - port: 10086       targetPort: 10086   type: LoadBalancer

k8s/product-deployment.yaml

apiVersion: apps/v1 kind: Deployment metadata:   name: product-deployment spec:   replicas: 2   selector:     matchLabels:       app: product   template:     metadata:       labels:         app: product     spec:       containers:         - name: product           image: commerce/product-service:0.0.1           ports:             - containerPort: 10087           env:             - name: NODE_ENV               value: production --- apiVersion: v1 kind: Service metadata:   name: product-service spec:   selector:     app: product   ports:     - port: 10087       targetPort: 10087   type: ClusterIP

Finally, run `kubectl apply -f k8s/` to deploy your services.

image.png
image.png

Kibana Configuration

Submit some logs in advance to let ElasticSearch generate index, visit https://localhost:9200/_cat/indices?v to check whether your index successfully added.

show all index
show all index
Visit http://localhost:5601/app/management/kibana/dataViews to create data view, the `index pattern` matches the `indexPrefix` you configured.
create data view
create data view
Finally visit http://localhost:5601/app/discover and select your data view, and the logs will be displayed on the right panel.
display your logs
display your logs
To install the kube-prometheus-stack, you can use a Helm chart. This is a Kubernetes monitoring solution that integrates Prometheus, Alertmanager, Grafana, and other tools. Below are the installation steps:

Add the Prometheus Community Repository

Add and update the Helm repository:

helm repo add prometheus-community <https://prometheus-community.github.io/helm-charts> helm repo update

Install kube-prometheus-stack

Choose a namespace (it is recommended to create a new one):

kubectl create namespace monitoring

Install the kube-prometheus-stack:

helm install kube-prometheus-stack prometheus-community/kube-prometheus-stack -n monitoring --set prometheus-node-exporter.hostRootFsMount.enabled=false

Verify Installation

Check if all related pods are running correctly:

kubectl get pods -n monitoring

image.png
image.png
If the pods are running, services like Grafana and Prometheus will be exposed as ClusterIP. Use the following command to view the services:

kubectl get svc -n monitoring

image.png
image.png

Access Grafana

The default username is `admin`, and you can retrieve the `password` with this command:

kubectl get secret -n monitoring kube-prometheus-stack-grafana -o jsonpath="{.data.admin-password}" | base64 --decode

Expose the Grafana service (e.g., using kubectl port-forward):

kubectl port-forward -n monitoring svc/kube-prometheus-stack-grafana 9999:80

Then, visit http://localhost:9999 and log in with the credentials retrieved in the previous step.

image.png
image.png

Summary

This is an MVP version of a Nest.js microservices project, covering the basics of coding, building, and deploying. However, there’s still a long way to go. Challenges such as security, high availability, and performance optimization remain to be addressed. If you have ideas or suggestions, feel free to reach out to me @YanceyOfficial on X or comment this article directly. Your input is always welcome as we work towards making this project more robust and production-ready.

Introducing Hyper Chat

PREVIOUS POST

Introducing Hyper Chat

    Search by